Asymptotic behavior of weighted quadratic variations of fractional Brownian motion: the critical case H=1/4
نویسنده
چکیده
We derive the asymptotic behavior of weighted quadratic variations of fractional Brownian motion B with Hurst index H = 1/4. This completes the only missing case in a very recent work by I. Nourdin, D. Nualart and C.A. Tudor. Moreover, as an application, we solve a recent conjecture of K. Burdzy and J. Swanson on the asymptotic behavior of the Riemann sums with alternating signs associated to B.
منابع مشابه
Asymptotic Behavior of Weighted Quadratic Variations of Fractional Brownian Motion: the Critical Case H = 1/4 by Ivan Nourdin
We derive the asymptotic behavior of weighted quadratic variations of fractional Brownian motion B with Hurst index H = 1/4. This completes the only missing case in a very recent work by I. Nourdin, D. Nualart and C. A. Tudor. Moreover, as an application, we solve a recent conjecture of K. Burdzy and J. Swanson on the asymptotic behavior of the Riemann sums with alternating signs associated to B.
متن کاملAsymptotic Behavior of Weighted Quadratic and Cubic Variations of Fractional Brownian Motion
The present article is devoted to a fine study of the convergence of renormalized weighted quadratic and cubic variations of a fractional Brownian motion B with Hurst index H . In the quadratic (resp. cubic) case, when H < 1/4 (resp. H < 1/6), we show by means of Malliavin calculus that the convergence holds in L toward an explicit limit which only depends on B. This result is somewhat surprisi...
متن کاملAsymptotic Behavior of Weighted Quadratic and Cubic Variations of Fractional Brownian Motion by Ivan Nourdin
The present article is devoted to a fine study of the convergence of renormalized weighted quadratic and cubic variations of a fractional Brownian motion B with Hurst index H . In the quadratic (resp. cubic) case, when H < 1/4 (resp. H < 1/6), we show by means of Malliavin calculus that the convergence holds in L2 toward an explicit limit which only depends on B. This result is somewhat surpris...
متن کاملQuadratic variations for the fractional-colored stochastic heat equation∗
Using multiple stochastic integrals and Malliavin calculus, we analyze the quadratic variations of a class of Gaussian processes that contains the linear stochastic heat equation on R driven by a non-white noise which is fractional Gaussian with respect to the time variable (Hurst parameter H) and has colored spatial covariance of α-Riesz-kernel type. The processes in this class are self-simila...
متن کاملWeighted power variations of iterated Brownian motion
We characterize the asymptotic behaviour of the weighted power variation processes associated with iterated Brownian motion. We prove weak convergence results in the sense of finite dimensional distributions, and show that the laws of the limiting objects can always be expressed in terms of three independent Brownian motions X, Y and B, as well as of the local times of Y . In particular, our re...
متن کامل